Skip to main content
View all authors

Build a Visual Document Index from multiple formats all at once - PDFs, Images, Slides - with ColPali

· 5 min read

Colpali

Do you have a messy collection of scanned documents, PDFs, academic papers, presentation slides, and standalone images — all mixed together with charts, tables, and figures — that you want to process into the same vector space for semantic search or to power an AI agent?

In this example, we’ll walk through how to build a visual document indexing pipeline using ColPali for embedding both PDFs and images — and then query the index using natural language.
We’ll skip OCR entirely — ColPali can directly understand document layouts, tables, and figures from images, making it perfect for semantic search across visual-heavy content.

CocoIndex Changelog 2025-08-18

· 13 min read

CocoIndex Changelog 2025-08-15

We’ve shipped 20+ releases — packed with production-ready features, scalability upgrades, and runtime improvements. 🚀 Huge thanks to our amazing users for the feedback and for running CocoIndex at scale!

Index Images with ColPali: Multi-Modal Context Engineering

· 7 min read

Colpali

We’re excited to announce that CocoIndex now supports native integration with ColPali — enabling multi-vector, patch-level image indexing using cutting-edge multimodal models.

With just a few lines of code, you can now embed and index images with ColPali’s late-interaction architecture, fully integrated into CocoIndex’s composable flow system.

Multi-Dimensional Vector Support in CocoIndex

· 6 min read

Custom Targets

CocoIndex now provides robust and flexible support for typed vector data — from simple numeric arrays to deeply nested multi-dimensional vectors. This support is designed for seamless integration with high-performance vector databases such as Qdrant, and enables advanced indexing, embedding, and retrieval workflows across diverse data modalities.

Bring your own building blocks: Export anywhere with Custom Targets

· 8 min read

Custom Targets

We’re excited to announce that CocoIndex now officially supports custom targets — giving you the power to export data to any destination, whether it's a local file, cloud storage, a REST API, or your own bespoke system.

This new capability unlocks a whole new level of flexibility for integrating CocoIndex into your pipelines and allows you to bring your own "building blocks" into our flow model.

Indexing Faces for Scalable Visual Search - Build your own Google Photo Search

· 5 min read

Face Detection

CocoIndex supports multi-modal processing natively - it could process both text and image with the same programming model and observe in the same user flow (in CocoInsight).

In this blog, we’ll walk through a comprehensive example of building a scalable face recognition pipeline using CocoIndex. We’ll show how to extract and embed faces from images, structure the data relationally, and export everything into a vector database for real-time querying.

CocoInsight can now visualize identified sections of an image based on the bounding boxes and makes it easier to understand and evaluate AI extractions - seamlessly attaching computed features in the context of unstructured visual data.

Introducing CocoInsight

· 4 min read

CocoInsight From day zero, we envisioned CocoInsight as a fundamental companion to CocoIndex — not just a tool, but a philosophy: making data explainable, auditable, and actionable at every stage of the data pipeline with AI workloads. CocoInsight has been in private beta for a while, it is one of the most loved feature for our users building ETL with coco, with significant boost on developer velocity, and lowering the barrier to entry for data engineering.

We are officially launching CocoInsight today - it has zero pipeline data retention and connects to your on-premise CocoIndex server for pipeline insights. This makes data directly visible and easy to develop ETL pipelines.

Flow-based schema inference for Qdrant

· 7 min read

CocoIndex + Qdrant Automatic Schema Setup

CocoIndex supports Qdrant natively - the integration features a high performance Rust stack with incremental processing end to end for scale and data freshness. 🎉 We just rolled out our latest change that handles automatic target schema setup with Qdrant from CocoIndex indexing flow.

Build Real-Time Product Recommendation Engine with LLM and Graph Database

· 8 min read

Product Graph

In this blog, we will build a real-time product recommendation engine with LLM and graph database. In particular, we will use LLM to understand the category (taxonomy) of a product. In addition, we will use LLM to enumerate the complementary products - users are likely to buy together with the current product (pencil and notebook). We will use Graph to explore the relationships between products that can be further used for product recommendations or labeling.