Skip to main content

13 posts tagged with "Feature"

Articles about new features and improvements in CocoIndex

View All Tags

Index PDF elements - text, images with mixed embedding models and metadata

· 7 min read
Linghua Jin
CocoIndex Maintainer

Index PDF elements - text, images with mixed encoders and citations with metadata

PDFs are rich with both text and visual content — from descriptive paragraphs to illustrations and tables. This example builds an end-to-end flow that parses, embeds, and indexes both, with full traceability to the original page.

In this example, we split out both text and images, link them back to page metadata, and enable unified semantic search. We’ll use CocoIndex to define the flow, SentenceTransformers for text embeddings, and CLIP for image embeddings — all stored in Qdrant for retrieval.

Bring your own data: Index any data with Custom Sources

· 7 min read
Linghua Jin
CocoIndex Maintainer

Bring your own data: Index any data with Custom Sources

We’re excited to announce Custom Sources — a new capability in CocoIndex that lets you read data from any system you want. Whether it’s APIs, databases, file systems, cloud storage, or other external services, CocoIndex can now ingest data incrementally, track changes efficiently, and integrate seamlessly into your flows.

After this change, users for CocoIndex are not bounded by any connectors, targets or some prebuilt libraries. You can use CocoIndex for anything, and enjoy the robust incremental computing to build fresh knowledge for AI.

Custom sources are the perfect complement to custom targets, giving you full control over both ends of your data pipelines.

🚀 Get started with custom sources by following the documentation now.

Control Processing Concurrency in CocoIndex

· 6 min read
George He
CocoIndex Maintainer

cover

CocoIndex is designed to be production-ready from day one—built to process data in parallel, maximizing throughput while keeping your systems safe. Today, we’ll look at how to optimize performance without overloading your environment. With CocoIndex, it’s just one configuration away.

Index Images with ColPali: Multi-Modal Context Engineering

· 7 min read
Linghua Jin
CocoIndex Maintainer

Colpali

We’re excited to announce that CocoIndex now supports native integration with ColPali — enabling multi-vector, patch-level image indexing using cutting-edge multimodal models.

With just a few lines of code, you can now embed and index images with ColPali’s late-interaction architecture, fully integrated into CocoIndex’s composable flow system.

Multi-Dimensional Vector Support in CocoIndex

· 6 min read
Linghua Jin
CocoIndex Maintainer

Custom Targets

CocoIndex now provides robust and flexible support for typed vector data — from simple numeric arrays to deeply nested multi-dimensional vectors. This support is designed for seamless integration with high-performance vector databases such as Qdrant, and enables advanced indexing, embedding, and retrieval workflows across diverse data modalities.

Bring your own building blocks: Export anywhere with Custom Targets

· 8 min read
Linghua Jin
CocoIndex Maintainer

Custom Targets

We’re excited to announce that CocoIndex now officially supports custom targets — giving you the power to export data to any destination, whether it's a local file, cloud storage, a REST API, or your own bespoke system.

This new capability unlocks a whole new level of flexibility for integrating CocoIndex into your pipelines and allows you to bring your own "building blocks" into our flow model.

Introducing CocoInsight

· 4 min read
Linghua Jin
CocoIndex Maintainer

CocoInsight From day zero, we envisioned CocoInsight as a fundamental companion to CocoIndex — not just a tool, but a philosophy: making data explainable, auditable, and actionable at every stage of the data pipeline with AI workloads. CocoInsight has been in private beta for a while, it is one of the most loved feature for our users building ETL with coco, with significant boost on developer velocity, and lowering the barrier to entry for data engineering.

We are officially launching CocoInsight today - it has zero pipeline data retention and connects to your on-premise CocoIndex server for pipeline insights. This makes data directly visible and easy to develop ETL pipelines.

Flow-based schema inference for Qdrant

· 7 min read
Linghua Jin
CocoIndex Maintainer

CocoIndex + Qdrant Automatic Schema Setup

CocoIndex supports Qdrant natively - the integration features a high performance Rust stack with incremental processing end to end for scale and data freshness. 🎉 We just rolled out our latest change that handles automatic target schema setup with Qdrant from CocoIndex indexing flow.

Continuous update derived data on source updates, automatically

· 5 min read

Continuous Updates

Today, we are excited to announce the support of continuous updates for long-running pipelines in CocoIndex. This powerful feature automatically applies incremental source changes to keep your index up-to-date with minimal latency.

With continuous updates, your indexes remain synchronized with your source data in real-time, ensuring that your applications always have access to the most current information without the performance overhead of full reindexing.

Incremental Processing with CocoIndex

· 9 min read

Incremental processing is one of the core values provided by CocoIndex. In CocoIndex, users declare the transformation, and don't need to worry about the work to keep index and source in sync.

CocoIndex creates & maintains an index, and keeps the derived index up to date based on source updates, with minimal computation and changes. That makes it suitable for ETL/RAG or any transformation tasks that stay low latency between source and index updates, and also minimizes the computation cost.